Ion dependence of carrier-mediated release in dopamine or norepinephrine transporter-transfected cells questions the hypothesis of facilitated exchange diffusion.

نویسندگان

  • C Pifl
  • E A Singer
چکیده

The mechanism of release mediated by the human dopamine and norepinephrine transporter (DAT and NET, respectively) was studied by a superfusion technique in human embryonic kidney 293 cells stably transfected with the respective transporter cDNA and loaded with the metabolically inert substrate [(3)H]1-methyl-4-phenylpyridinium. Release was induced by amphetamine, dopamine, and norepinephrine or by lowering the sodium or chloride concentration in the superfusion buffer (iso-osmotic replacement by lithium and isethionate, respectively). Efflux of [(3)H]1-methyl-4-phenylpyridinium was analyzed at 30-s time resolution. In both transporters, release induced by the substrates amphetamine, dopamine, and norepinephrine followed the same time course as release induced by the removal of chloride and was faster than that caused by the removal of sodium. In the presence of low sodium (DAT: 10 mM; NET: 5 mM) none of the substrates was able to induce release from either type of cell, but adding back sodium to control conditions promptly restored the releasing action. In the presence of low chloride (DAT: 3 mM; NET: 2 mM), however, amphetamine as well as the catecholamines stimulated release from both types of cell. In contrast with the ion dependence of release observed in superfusion experiments, uptake initial rates of substrates at concentrations used in release experiments were the same or even higher at low sodium than at low chloride. The results indicate a decisive role of extracellular sodium for carrier-mediated release unrelated to the sodium-dependent uptake of the releasing substrate, and suggest a release mechanism different from simple exchange diffusion considering only the amines as substrates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zn2+ modulates currents generated by the dopamine transporter: parallel effects on amphetamine-induced charge transfer and release.

The psychostimulant drug amphetamine increases extracellular monamines in the brain acting on neurotransmitter transporters, especially the dopamine transporter. Mediated by this plasmalemmal pump, amphetamine does not only induce release but also charge transfer which might be involved in the release mechanism. To study a potential link between the two phenomena, we used Zn(2+) as an acute reg...

متن کامل

Pharmacological characterization of ecstasy synthesis byproducts with recombinant human monoamine transporters.

Ecstasy samples often contain byproducts of the illegal, uncontrolled synthesis of N-methyl-3,4-methylenedioxy-amphetamine or 3,4-methylenedioxymethamphetamine (MDMA). MDMA and eight chemically defined byproducts of MDMA synthesis were investigated for their interaction with the primary sites of action of MDMA, namely the human plasmalemmal monamine transporters for norepinephrine, serotonin, a...

متن کامل

The role of zinc ions in reverse transport mediated by monoamine transporters.

The human dopamine transporter (hDAT) contains an endogenous high affinity Zn2+ binding site with three coordinating residues on its extracellular face (His193, His375, and Glu396). Upon binding to this site, Zn2+ causes inhibition of [3H]1-methyl-4-phenylpyridinium ([3H]MPP+) uptake. We investigated the effect of Zn2+ on outward transport by superfusing hDAT-expressing HEK-293 cells preloaded ...

متن کامل

Protein kinase C and intracellular calcium are required for amphetamine-mediated dopamine release via the norepinephrine transporter in undifferentiated PC12 cells.

The role of protein kinase C and intracellular Ca(2+) on amphetamine-mediated dopamine release through the norepinephrine plasmalemmal transporter in undifferentiated PC12 cells was investigated. The selective protein kinase C inhibitor chelerythrine completely inhibited endogenous dopamine release elicited by 1 microM amphetamine. Direct activation of protein kinase C increased dopamine releas...

متن کامل

Sodium-dependent norepinephrine-induced currents in norepinephrine-transporter-transfected HEK-293 cells blocked by cocaine and antidepressants.

Transport of norepinephrine (NE+) by cocaine- and antidepressant-sensitive transporters in presynaptic terminals is predicted to involve the cotransport of Na+ and Cl-, resulting in a net movement of charge per transport cycle. To explore the relationship between catecholamine transport and ion permeation through the NE transporter, we established a human norepinephrine transporter (hNET) cell ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular pharmacology

دوره 56 5  شماره 

صفحات  -

تاریخ انتشار 1999